Probability - The Science of Uncertainty and Data
About this Course
The world is full of uncertainty: accidents, storms, unruly financial markets, noisy communications. The world is also full of data. Probabilistic modeling and the related field of statistical inference are the keys to analyzing data and making scientifically sound predictions. Probabilistic models use the language of mathematics. But instead of relying on the traditional "theorem-proof" format, we develop the material in an intuitive -- but still rigorous and mathematically-precise -- manner. Furthermore, while the applications are multiple and evident, we emphasize the basic concepts and methodologies that are universally applicable. The course covers all of the basic probability concepts, including: multiple discrete or continuous random variables, expectations, and conditional distributions laws of large numbers the main tools of Bayesian inference methods an introduction to random processes (Poisson processes and Markov chains) The contents of this courseare heavily based upon the corresponding MIT class -- Introduction to Probability -- a course that has been offered and continuously refined over more than 50 years. It is a challenging class but will enable you to apply the tools of probability theory to real-world applications or to your research. This course is part of theMITx MicroMasters Program in Statistics and Data Science. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit https://micromasters.mit.edu/ds/.Created by: Massachusetts Institute of Technology
Level: Advanced

Related Online Courses
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Le « Big Data » et l'UX vous interpellent? Ce MOOC vous donnera les méthodes et outils pour analyser le spectre des données traitées en UX, de l'analyse qualitative aux analytiques Web. Vous appr... more
R es un lenguaje de programación de código abierto orientado a objetos con fundamentos estadísticos, que permite realizar tratamientos muy potentes con muy pocas líneas de código. La mayoría de su... more
In this course, part of our Professional Certificate Program in Data Science,you will learn valuable concepts in probability theory. The motivation for this course is the circumstances surrounding... more
SQL (Structured Query Language) is the most commonly used language to communicate with databases and extract data for application development, reporting and analytics. It is ubiquitous for... more