Understanding Artificial Intelligence through Algorithmic Information Theory
About this Course
Artificial Intelligence is more than just a collection of brilliant, innovative methods to solve problems. If you are interested in machine learning or are planning to explore it, the course will make you see artificial learning in an entirely new way. You will know how to formulate optimal hypotheses for a learning task. And you will be able to analyze learning techniques such as clustering or neural networks as just ways of compressing information. If you are interested in reasoning , you will understand that reasoning by analogy, reasoning by induction, explaining, proving, etc. are all alike; they all amount to providing more compact descriptions of situations. If you are interested in mathematics , you will be amazed at the fact that crucial notions such as probability and randomness can be redefined in terms of algorithmic information. You will also understand that there are theoretical limits to what artificial intelligence can do. If you are interested in human intelligence , you will find some intriguing results in this course. Thanks to algorithmic information, notions such as unexpectedness, interest and, to a certain extent, aesthetics, can be formally defined and computed, and this may change your views on what artificial intelligence can achieve in the future. Half a century ago, three mathematicians made the same discovery independently. They understood that the concept of information belonged to computer science; that computer science could say what information means. Algorithmic Information Theory was born. Algorithmic Information is what is left when all redundancy has been removed. This makes sense, as redundant content cannot add any useful information. Removing redundancy to extract meaningful information is something computer scientists are good at doing. Algorithmic information is a great conceptual tool. It describes what artificial intelligence actually does , and what it should do to make optimal choices. It also says what artificial intelligence can’t do. Algorithmic information is an essential component in the theoretical foundations of AI. Keywords: Algorithmic information, Kolmogorov complexity, theoretical computer science, universal Turing machine, coding, compression, semantic distance, Zipf’s law, probability theory, algorithmic probability, computability, incomputability, random sequences, incompleteness theorem, machine learning, Occam's razor, minimum description length, induction, cognitive science, relevance.Created by: IMT
Level: Advanced

Related Online Courses
The world around us becomes immersed in technology, which is ultimately driven by programming and governed by its laws. We believe that high-level knowledge of means for programming ‒ past, p... more
This course introduces administrative tasks that a system administrator can perform with Linux hosted on IBM Power servers. This includes virtualization concepts such as logical partitioning,... more
Game designers create the ideas and worlds of games—they design the environment, characters, game mechanics, goals and user experience. Successful game designers do this by applying the f... more
Around the world, major challenges of our time such as population growth and climate change are being addressed in cities. Here, citizens play an important role amidst governments, companies, NGOs... more
It has become almost impossible to imagine what our lives would be like without the many benefits of packaging - just think about the different packaging and single-use items you use on a daily... more