Statistical Learning
About this Course
This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical). This is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter. The lectures cover all the material in An Introduction to Statistical Learning, with Applications in R (second addition) by James, Witten, Hastie and Tibshirani (Springer, 2021). The pdf for this book is available for free on the book website.Created by: Stanford University
Level: Introductory

Related Online Courses
El curso que se propone es ideal para investigadores y alumnos que se encuentren cursando trabajos de fin de grado, trabajos de fin de máster o realizando tesis, así como todos aquellos del área de... more
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
La ciencia de los datos se encarga de la extracción, preparación, análisis y presentación visual de datos. Existen diferentes lenguajes de programación que otorgan posibilidades para realizar proy... more
Data is everywhere, from the media to the health sciences, and from financial forecasting to engineering design. It drives our decisions, and shapes our views and beliefs. But how can we make sense... more
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more