Big Data Analytics Using Spark
About this Course
In data science, data is called "big" if it cannot fit into the memory of a single standard laptop or workstation. The analysis of big datasets requires using a cluster of tens, hundreds or thousands of computers. Effectively using such clusters requires the use of distributed files systems, such as the Hadoop Distributed File System (HDFS) and corresponding computational models, such as Hadoop, MapReduce and Spark. In this course, part of the Data Science MicroMasters program, you will learn what the bottlenecks are in massive parallel computation and how to use spark to minimize these bottlenecks. You will learn how to perform supervised an unsupervised machine learning on massive datasets using the Machine Learning Library (MLlib). In this course, as in the other ones in this MicroMasters program, you will gain hands-on experience using PySpark within the Jupyter notebooks environment.Created by: The University of California, San Diego
Level: Advanced

Related Online Courses
SQL (Structured Query Language) is the most commonly used language to communicate with databases and extract data for application development, reporting and analytics. It is ubiquitous for... more
The job of a data scientist is to glean knowledge from complex and noisy datasets. Reasoning about uncertainty is inherent in the analysis of noisy data. Probability and Statistics provide the... more
Este es el segundo curso de una serie sobre Power BI, es un curso de nivel intermedio en el que ampliarás conocimientos sobre las medidas DAX para poder generar funciones complejas que midan ... more
Le « Big Data » et l'UX vous interpellent? Ce MOOC vous donnera les méthodes et outils pour analyser le spectre des données traitées en UX, de l'analyse qualitative aux analytiques Web. Vous appr... more
¿Necesitas incorporar la inteligencia de negocio a tu empresa de forma que te permita analizar cantidades ingentes de datos para tomar las mejores decisiones? Power BI Desktop, la herramienta ... more