Statistics and R

About this Course

This course teaches the R programming language in the context of statistical data and statistical analysis in the life sciences. We will learn the basics of statistical inference in order to understand and compute p-values and confidence intervals, all while analyzing data with R code. We provide R programming examples in a way that will help make the connection between concepts and implementation. Problem sets requiring R programming will be used to test understanding and ability to implement basic data analyses. We will use visualization techniques to explore new data sets and determine the most appropriate approach. We will describe robust statistical techniques as alternatives when data do not fit assumptions required by the standard approaches. By using R scripts to analyze data, you will learn the basics of conducting reproducible research. Given the diversity in educational background of our students we have divided the course materials into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. We start with simple calculations and descriptive statistics. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts. These courses make up two Professional Certificates and are self-paced: Data Analysis for Life Sciences: PH525.1x: Statistics and R for the Life Sciences PH525.2x: Introduction to Linear Models and Matrix Algebra PH525.3x: Statistical Inference and Modeling for High-throughput Experiments PH525.4x: High-Dimensional Data Analysis Genomics Data Analysis: PH525.5x: Introduction to Bioconductor PH525.6x: Case Studies in Functional Genomics PH525.7x: Advanced Bioconductor This class was supported in part by NIH grant R25GM114818.

Created by: Harvard University

Level: Intermediate


Related Online Courses

This proctored examination assesses all concepts, methods and techniques introduced across the following four courses within the LSE MicroBachelors program in Statistics Fundamentals: Statistics 1:... more
Today the principles and techniques of reproducible research are more important than ever, across diverse disciplines from astrophysics to political science. No one wants to do research that... more
Use Tableau to explore data and discover insights to innovate data-driven decision-making. Employer demand for Tableau skills will grow 35% over the next 10 years. Whether you are in a... more
Have you wanted to build a TinyML device? In Deploying TinyML, you will learn the software, write the code, and deploy the model to your own tiny microcontroller-based device. Before you know it,... more
Designing a data lake is challenging because of the scale and growth of data. Developers need to understand best practices to avoid common mistakes that could be hard to rectify. In this course we... more

CONTINUE SEARCH

FOLLOW COLLEGE PARENT CENTRAL