Transfer Functions and the Laplace Transform
About this Course
This course is about the Laplace Transform, a single very powerful tool for understanding the behavior of a wide range of mechanical and electrical systems: from helicopters to skyscrapers, from light bulbs to cell phones. This tool captures the behavior of the system and displays it in highly graphical form that is used every day by engineers to design complex systems. This course is centered on the concept of the transfer function of a system. Also called the system function, the transfer function completely describes the response of a system to any input signal in a highly conceptual manner. This visualization occurs not in the time domain, where we normally observe behavior of systems, but rather in the “frequency domain.” We need a device for moving from the time domain to the frequency domain; this is the Laplace transform. We will illustrate these principles using concrete mechanical and electrical systems such as tuned mass dampers and RLC circuits. The five modules in this series are being offered as an XSeries on edX. Please visit the Differential EquationsXSeries Program Page to learn more and to enroll in the modules. --- Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.Created by: Massachusetts Institute of Technology
Level: Intermediate

Related Online Courses
Physicists use math all of the time in nearly everything that they work on. Hence, it is critical that you become efficient in being able to use more advanced math to enable you to work on more... more
Nuestro curso de álgebra lineal te propone acercarte a los fundamentos de esta importante materia para comprender las bases que te permitirán entrar a las aplicaciones más actuales de este tema. E... more
La modelación matemática es el intento del hombre por describir algún fenómeno del mundo que nos rodea a través de herramientas matemáticas como por ejemplo las ecuaciones y desigualdades, entre... more
How did Newton describe the orbits of the planets? To do this, he created calculus. But he used a different coordinate system more appropriate for planetary motion. We will learn to shift our... more
L'équation z^2=−1 n'admet pas de solution dans R. Nous introduisons le système des nombres complexes C : C'est un corps qui contient R et qui nous permet de résoudre cette équation. Nous intro... more