Linear Algebra IV: Orthogonality & Symmetric Matrices and the SVD
About this Course
In the first part of this course you will explore methods to compute an approximate solution to an inconsistent system of equations that have no solutions. Our overall approach is to center our algorithms on the concept of distance. To this end, you will first tackle the ideas of distance and orthogonality in a vector space. You will then apply orthogonality to identify the point within a subspace that is nearest to a point outside of it. This has a central role in the understanding of solutions to inconsistent systems. By taking the subspace to be the column space of a matrix, you will develop a method for producing approximate (“least-squares”) solutions for inconsistent systems. You will then explore another application of orthogonal projections: creating a matrix factorization widely used in practical applications of linear algebra. The remaining sections examine some of the many least-squares problems that arise in applications, including the least squares procedure with more general polynomials and functions. This course then turns to symmetric matrices. arise more often in applications, in one way or another, than any other major class of matrices. You will construct the diagonalization of a symmetric matrix, which gives a basis for the remainder of the course.Created by: The Georgia Institute of Technology
Level: Intermediate

Related Online Courses
Created specifically for those who are new to the study of probability, or for those who are seeking an approachable review of core concepts prior to enrolling in a college-level statistics course,... more
This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level further maths exams. You will investigate key topic areas to gain a deeper... more
Une suite de nombres réels est une fonction f:N→R . Il est habituel d'écrire an:=f(n) pour la valeur de f en n. Par exemple, on pourrait définir une suite f(n):=an:=12n, c'est-à-dire a0=1,... more
Differential equations are the mathematical language we use to describe the world around us. Most phenomena can be modeled not by single differential equations, but by systems of interacting... more
Nous arrivons au cœur du sujet de notre discussion sur les fonctions : le concept de la dérivabilité d'une fonction. Nous nous intéressons en particulier à la question de la continuité des fonct... more