Data Science: Inference and Modeling
About this Course
Statistical inference and modeling are indispensable for analyzing data affected by chance, and thus essential for data scientists. In this course, you will learn these key concepts through a motivating case study on election forecasting. This course will show you how inference and modeling can be applied to develop the statistical approaches that make polls an effective tool and we'll show you how to do this using R. You will learn concepts necessary to define estimates and margins of errors and learn how you can use these to make predictions relatively well and also provide an estimate of the precision of your forecast. Once you learn this you will be able to understand two concepts that are ubiquitous in data science: confidence intervals, and p-values. Then, to understand statements about the probability of a candidate winning, you will learn about Bayesian modeling. Finally, at the end of the course, we will put it all together to recreate a simplified version of an election forecast model and apply it to the 2016 election.Created by: Harvard University
Level: Introductory

Related Online Courses
El futuro pertenece a la ciencia de datos y a quienes la entiendan. Al igual que el petróleo y el gas impulsaron las economías de los siglos XX y XXI, los datos impulsan cada vez mas la i... more
In this course, you will learn how to organize your data within the Microsoft Office Excel software tool. Once organized, we will discuss data cleaning. You will learn how to identify outliers and... more
Sustainable development is the most important global movement of our time. In 2015, the 193 member states of the United Nations unanimously adopted the 2030 Agenda for Sustainable Development and... more
Big data is transforming the health care industry relative to improving quality of care and reducing costs--key objectives for most organizations. Employers are desperately searching for... more
In this course, you will learn about the characteristics of CER/PCOR, compare and contrast CER/PCOR studies and randomized controlled trials, and you will hear how PCOR researchers have overcome a... more