Linear Algebra II: Matrix Algebra
About this Course
Your ability to apply the concepts that we introduced in our previous course is enhanced when you can perform algebraic operations with matrices. At the start of this class, you will see how we can apply the Invertible Matrix Theorem to describe how a square matrix might be used to solve linear equations. This theorem is a fundamental role in linear algebra, as it synthesizes many of the concepts introduced in the first course into one succinct concept. You will then explore theorems and algorithms that will allow you to apply linear algebra in ways that involve two or more matrices. You will examine partitioned matrices and matrix factorizations, which appear in most modern uses of linear algebra. You will also explore two applications of matrix algebra, to economics and to computer graphics. Students taking this class are encouraged to first complete the first course in this series, linear equations.Created by: The Georgia Institute of Technology
Level: Intermediate

Related Online Courses
Nuestro curso de álgebra lineal te propone acercarte a los fundamentos de esta importante materia para comprender las bases que te permitirán entrar a las aplicaciones más actuales de este tema. E... more
La aritmética y el álgebra son dos de los pilares de las matemáticas que se usan frecuentemente tanto en situaciones de la cotidianidad como en los cursos de matemáticas universitarias. En este MOO... more
This exam assesses all concepts, methods and techniques introduced across the four courses within the LSE MicroBachelors program in Mathematics and Statistics Fundamentals: Mathematics 1:... more
La aritmética es la rama de la matemática que se dedica al estudio de los números y las operaciones elementales entre ellos. Sin darnos cuenta aplicamos dicha rama en diversas situaciones de nu... more
This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level further maths exams. You will investigate key topic areas to gain a deeper... more